Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Infect Dis ; 76(11): 1919-1927, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36795050

RESUMO

BACKGROUND: The long-acting 8-aminoquinoline tafenoquine may be a good candidate for mass drug administration if it exhibits sufficient blood-stage antimalarial activity at doses low enough to be tolerated by glucose 6-phosphate dehydrogenase (G6PD)-deficient individuals. METHODS: Healthy adults with normal levels of G6PD were inoculated with Plasmodium falciparum 3D7-infected erythrocytes on day 0. Different single oral doses of tafenoquine were administered on day 8. Parasitemia and concentrations of tafenoquine and the 5,6-orthoquinone metabolite in plasma/whole blood/urine were measured and standard safety assessments performed. Curative artemether-lumefantrine therapy was administered if parasite regrowth occurred, or on day 48 ± 2. Outcomes were parasite clearance kinetics, pharmacokinetic and pharmacokinetic/pharmacodynamic (PK/PD) parameters from modelling, and dose simulations in a theoretical endemic population. RESULTS: Twelve participants were inoculated and administered 200 mg (n = 3), 300 mg (n = 4), 400 mg (n = 2), or 600 mg (n = 3) tafenoquine. The parasite clearance half-life with 400 mg or 600 mg (5.4 hours and 4.2 hours, respectively) was faster than with 200 mg or 300 mg (11.8 hours and 9.6 hours, respectively). Parasite regrowth occurred after dosing with 200 mg (3/3 participants) and 300 mg (3/4 participants) but not after 400 mg or 600 mg. Simulations using the PK/PD model predicted that 460 mg and 540 mg would clear parasitaemia by a factor of 106 and 109, respectively, in a 60-kg adult. CONCLUSIONS: Although a single dose of tafenoquine exhibits potent P. falciparum blood-stage antimalarial activity, the estimated doses to effectively clear asexual parasitemia will require prior screening to exclude G6PD deficiency. Clinical Trials Registration. Australian and New Zealand Clinical Trials Registry (ACTRN12620000995976).


Assuntos
Antimaláricos , Malária Falciparum , Adulto , Humanos , Antimaláricos/efeitos adversos , Plasmodium falciparum , Voluntários Saudáveis , Parasitemia/tratamento farmacológico , Artemeter/farmacologia , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Austrália , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia
2.
Lancet Infect Dis ; 22(6): 879-890, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35247321

RESUMO

BACKGROUND: New antimalarials with novel mechanisms of action are needed to combat the emergence of drug resistance. Triaminopyrimidines comprise a novel antimalarial class identified in a high-throughput screen against asexual blood-stage Plasmodium falciparum. This first-in-human study aimed to characterise the safety, pharmacokinetics, and antimalarial activity of the triaminopyrimidine ZY-19489 in healthy volunteers. METHODS: A three-part clinical trial was conducted in healthy adults (aged 18-55 years) in Brisbane, QLD, Australia. Part one was a double-blind, randomised, placebo-controlled, single ascending dose study in which participants enrolled into one of six dose groups (25, 75, 150, 450, 900, or 1500 mg) were randomly assigned (3:1) to ZY-19489 or placebo. Part two was an open-label, randomised, two-period cross-over, pilot food-effect study in which participants were randomly assigned (1:1) to a fasted-fed or a fed-fasted sequence. Part three was an open-label, randomised, volunteer infection study using the P falciparum induced blood-stage malaria model in which participants were enrolled into one of two cohorts, with participants in cohort one all receiving the same dose of ZY-19489 and participants in cohort two randomly assigned to receive one of two doses. The primary outcome for all three parts was the incidence, severity, and relationship to ZY-19489 of adverse events. Secondary outcomes were estimation of ZY-19489 pharmacokinetic parameters for all parts; how these parameters were affected by the fed state for part two only; and the parasite reduction ratio, parasite clearance half-life, recrudescent parasitaemia, and pharmacokinetic-pharmacodynamic modelling parameters for part three only. This trial is registered with the Australian New Zealand Clinical Trials Registry (ACTRN12619000127101, ACTRN12619001466134, and ACTRN12619001215112). FINDINGS: 48 participants were enrolled in part one (eight per cohort for 25-1500 mg cohorts), eight in part two (four in each group, all dosed with 300 mg), and 15 in part three (five dosed with 200 mg, eight with 300 mg, and two with 900 mg). In part one, the incidence of drug-related adverse events was higher in the 1500 mg dose group (occurring in all six participants) than in lower-dose groups and the placebo group (occurring in one of six in the 25 mg group, two of six in the 75 mg group, three of six in the 150 mg group, two of six in the 450 mg group, four of six in the 900 mg group, and four of 12 in the placebo group), due to the occurrence of mild gastrointestinal symptoms. Maximum plasma concentrations occurred 5-9 h post-dosing, and the elimination half-life was 50-97 h across the dose range. In part two, three of seven participants had a treatment-related adverse event in the fed state and four of eight in the fasted state. Dosing in the fed state delayed absorption (maximum plasma concentration occurred a median of 12·0 h [range 7·5-16·0] after dosing in the fed state vs 6·0 h [4·5-9·1] in the fasted state) but had no effect on overall exposure (difference in area under the concentration-time curve from time 0 [dosing] extrapolated to infinity between fed and fasted states was -0·013 [90% CI -0·11 to 0·08]). In part three, drug-related adverse events occurred in four of five participants in the 200 mg group, seven of eight in the 300 mg group, and both participants in the 900 mg group. Rapid initial parasite clearance occurred in all participants following dosing (clearance half-life 6·6 h [95% CI 6·2-6·9] for 200 mg, 6·8 h [95% CI 6·5-7·1] for 300 mg, and 7·1 h [95% CI 6·6-7·6] for 900 mg). Recrudescence occurred in four of five participants in the 200 mg group, five of eight in the 300 mg group, and neither of the two participants in the 900 mg group. Simulations done using a pharmacokinetic-pharmacodynamic model predicted that a single dose of 1100 mg would clear baseline parasitaemia by a factor of 109. INTERPRETATION: The safety, pharmacokinetic profile, and antimalarial activity of ZY-19489 in humans support the further development of the compound as a novel antimalarial therapy. FUNDING: Cadila Healthcare and Medicines for Malaria Venture.


Assuntos
Antimaláricos , Malária Falciparum , Adulto , Antimaláricos/efeitos adversos , Austrália , Método Duplo-Cego , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Parasitemia , Projetos Piloto , Voluntários
3.
J Infect Dis ; 225(6): 1062-1069, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-32479608

RESUMO

BACKGROUND: Interventions that effectively target Plasmodium vivax are critical for the future control and elimination of malaria. We conducted a P. vivax volunteer infection study to characterize the antimalarial activity of artefenomel, a new drug candidate. METHODS: Eight healthy, malaria-naive participants were intravenously inoculated with blood-stage P. vivax and subsequently received a single oral 200-mg dose of artefenomel. Blood samples were collected to monitor the development and clearance of parasitemia, and plasma artefenomel concentration. Mosquito feeding assays were conducted before artefenomel dosing to investigate parasite transmissibility. RESULTS: Initial parasite clearance occurred in all participants after artefenomel administration (log10 parasite reduction ratio over 48 hours, 1.67; parasite clearance half-life, 8.67 hours). Recrudescence occurred in 7 participants 11-14 days after dosing. A minimum inhibitory concentration of 0.62 ng/mL and minimum parasiticidal concentration that achieves 90% of maximum effect of 0.83 ng/mL were estimated, and a single 300-mg dose was predicted to clear 109 parasites per milliliter with 95% certainty. Gametocytemia developed in all participants and was cleared 4-8 days after dosing. At peak gametocytemia, 75% of participants were infectious to mosquitoes. CONCLUSIONS: The in vivo antimalarial activity of artefenomel supports its further clinical development as a treatment for P. vivax malaria. CLINICAL TRIALS REGISTRATION: NCT02573857.


Assuntos
Antimaláricos , Culicidae , Antagonistas do Ácido Fólico , Malária Falciparum , Malária Vivax , Parasitos , Adamantano/análogos & derivados , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antagonistas do Ácido Fólico/farmacologia , Humanos , Malária Falciparum/parasitologia , Malária Vivax/tratamento farmacológico , Peróxidos , Plasmodium falciparum , Plasmodium vivax
4.
Antimicrob Agents Chemother ; 66(2): e0165921, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843390

RESUMO

The emergence and spread of parasite resistance to currently available antimalarials has highlighted the importance of developing novel antimalarials. This scoping review provides an overview of antimalarial drug candidates undergoing phase I and II studies between 1 January 2016 and 28 April 2021. PubMed, Web of Science, Embase, clinical trial registries, and reference lists were searched for relevant studies. Information regarding antimalarial compound details, clinical trial characteristics, study population, and drug pharmacokinetics and pharmacodynamics (PK-PD) were extracted. A total of 50 studies were included, of which 24 had published their results and 26 were unpublished. New antimalarial compounds were evaluated as monotherapy (28 studies, 14 drug candidates) and combination therapy (9 studies, 10 candidates). Fourteen active compounds were identified in the current antimalarial drug development pipeline together with 11 compounds that are inactive, 6 due to insufficient efficacy. PK-PD data were available from 24 studies published as open-access articles. Four unpublished studies have made their results publicly available on clinical trial registries. The terminal elimination half-life of new antimalarial compounds ranged from 14.7 to 483 h. The log10 parasite reduction ratio over 48 h and parasite clearance half-life for Plasmodium falciparum following a single-dose monotherapy were 1.55 to 4.1 and 3.4 to 9.4 h, respectively. The antimalarial drug development landscape has seen a number of novel compounds, with promising PK-PD properties, evaluated in phase I and II studies over the past 5 years. Timely public disclosure of PK-PD data is crucial for informative decision-making and drug development strategy.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Desenvolvimento de Medicamentos , Resistência a Medicamentos , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum
5.
Artigo em Inglês | MEDLINE | ID: mdl-33199389

RESUMO

The spiroindolone cipargamin, a new antimalarial compound that inhibits Plasmodium ATP4, is currently in clinical development. This study aimed to characterize the antimalarial activity of cipargamin in healthy volunteers experimentally infected with blood-stage Plasmodium falciparum Eight subjects were intravenously inoculated with parasite-infected erythrocytes and received a single oral dose of 10 mg cipargamin 7 days later. Blood samples were collected to monitor the development and clearance of parasitemia and plasma cipargamin concentrations. Parasite regrowth was treated with piperaquine monotherapy to clear asexual parasites, while allowing gametocyte transmissibility to mosquitoes to be investigated. An initial rapid decrease in parasitemia occurred in all participants following cipargamin dosing, with a parasite clearance half-life of 3.99 h. As anticipated from the dose selected, parasite regrowth occurred in all 8 subjects 3 to 8 days after dosing and allowed the pharmacokinetic/pharmacodynamic relationship to be determined. Based on the limited data from the single subtherapeutic dose cohort, a MIC of 11.6 ng/ml and minimum parasiticidal concentration that achieves 90% of maximum effect of 23.5 ng/ml were estimated, and a single 95-mg dose (95% confidence interval [CI], 50 to 270) was predicted to clear 109 parasites/ml. Low gametocyte densities were detected in all subjects following piperaquine treatment, which did not transmit to mosquitoes. Serious adverse liver function changes were observed in three subjects, which led to premature study termination. The antimalarial activity characterized in this study supports the further clinical development of cipargamin as a new treatment for P. falciparum malaria, although the hepatic safety profile of the compound warrants further evaluation. (This study has been registered at ClinicalTrials.gov under identifier NCT02543086.).


Assuntos
Antimaláricos , Malária Falciparum , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Voluntários Saudáveis , Humanos , Indóis , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Compostos de Espiro
6.
PLoS Med ; 17(8): e1003203, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32822347

RESUMO

BACKGROUND: Artemisinin resistance is threatening malaria control. We aimed to develop and test a human model of artemisinin-resistant (ART-R) Plasmodium falciparum to evaluate the efficacy of drugs against ART-R malaria. METHODS AND FINDINGS: We conducted 2 sequential phase 1, single-centre, open-label clinical trials at Q-Pharm, Brisbane, Australia, using the induced blood-stage malaria (IBSM) model, whereby healthy participants are intravenously inoculated with blood-stage parasites. In a pilot study, participants were inoculated (Day 0) with approximately 2,800 viable P. falciparum ART-R parasites. In a comparative study, participants were randomised to receive approximately 2,800 viable P. falciparum ART-R (Day 0) or artemisinin-sensitive (ART-S) parasites (Day 1). In both studies, participants were administered a single approximately 2 mg/kg oral dose of artesunate (AS; Day 9). Primary outcomes were safety, ART-R parasite infectivity, and parasite clearance. In the pilot study, 2 participants were enrolled between April 27, 2017, and September 12, 2017, and included in final analyses (males n = 2 [100%], mean age = 26 years [range, 23-28 years]). In the comparative study, 25 participants were enrolled between October 26, 2017, and October 18, 2018, of whom 22 were inoculated and included in final analyses (ART-R infected participants: males n = 7 [53.8%], median age = 22 years [range, 18-40 years]; ART-S infected participants: males n = 5 [55.6%], median age = 28 years [range, 22-35 years]). In both studies, all participants inoculated with ART-R parasites became parasitaemic. A total of 36 adverse events were reported in the pilot study and 277 in the comparative study. Common adverse events in both studies included headache, pyrexia, myalgia, nausea, and chills; none were serious. Seven participants experienced transient severe falls in white cell counts and/or elevations in liver transaminase levels which were considered related to malaria. Additionally, 2 participants developed ventricular extrasystoles that were attributed to unmasking of a predisposition to benign fever-induced tachyarrhythmia. In the comparative study, parasite clearance half-life after AS was significantly longer for ART-R infected participants (n = 13, 6.5 hours; 95% confidence interval [CI] 6.3-6.7 hours) compared with ART-S infected participants (n = 9, 3.2 hours; 95% CI 3.0-3.3 hours; p < 0.001). The main limitation of this study was that the ART-R and ART-S parasite strains did not share the same genetic background. CONCLUSIONS: We developed the first (to our knowledge) human model of ART-R malaria. The delayed clearance profile of ART-R parasites after AS aligns with field study observations. Although based on a relatively small sample size, results indicate that this model can be safely used to assess new drugs against ART-R P. falciparum. TRIAL REGISTRATION: The studies were registered with the Australian New Zealand Clinical Trials Registry: ACTRN12617000244303 (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=372357) and ACTRN12617001394336 (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373637).


Assuntos
Anti-Infecciosos/uso terapêutico , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária Falciparum/sangue , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/metabolismo , Adolescente , Adulto , Animais , Anti-Infecciosos/efeitos adversos , Anti-Infecciosos/farmacologia , Antimaláricos/efeitos adversos , Antimaláricos/farmacologia , Artemisininas/efeitos adversos , Artemisininas/farmacologia , Artesunato/efeitos adversos , Artesunato/farmacologia , Artesunato/uso terapêutico , Austrália/epidemiologia , Feminino , Cefaleia/induzido quimicamente , Voluntários Saudáveis , Humanos , Malária Falciparum/epidemiologia , Masculino , Náusea/induzido quimicamente , Parasitos/metabolismo , Projetos Piloto , Adulto Jovem
7.
Clin Pharmacol Ther ; 108(5): 1055-1066, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32415986

RESUMO

Chloroquine has been used for the treatment of malaria for > 70 years; however, chloroquine pharmacokinetic (PK) and pharmacodynamic (PD) profile in Plasmodium vivax malaria is poorly understood. The objective of this study was to describe the PK/PD relationship of chloroquine and its major metabolite, desethylchloroquine, in a P. vivax volunteer infection study. We analyzed data from 24 healthy subjects who were inoculated with blood-stage P. vivax malaria and administered a standard treatment course of chloroquine. The PK of chloroquine and desethylchloroquine was described by a two-compartment model with first-order absorption and elimination. The relationship between plasma and whole blood concentrations of chloroquine and P. vivax parasitemia was characterized by a PK/PD delayed response model, where the equilibration half-lives were 32.7 hours (95% confidence interval (CI) 27.4-40.5) for plasma data and 24.1 hours (95% CI 19.0-32.7) for whole blood data. The estimated parasite multiplication rate was 17 folds per 48 hours (95% CI 14-20) and maximum parasite killing rate by chloroquine was 0.213 hour-1 (95% CI 0.196-0.230), translating to a parasite clearance half-life of 4.5 hours (95% CI 4.1-5.0) and a parasite reduction ratio of 400 every 48 hours (95% CI 320-500). This is the first study that characterized the PK/PD relationship between chloroquine plasma and whole blood concentrations and P. vivax clearance using a semimechanistic population PK/PD modeling. This PK/PD model can be used to optimize dosing scenarios and to identify optimal dosing regimens for chloroquine where resistance to chloroquine is increasing.


Assuntos
Antimaláricos/farmacocinética , Cloroquina/farmacocinética , Malária Vivax/tratamento farmacológico , Plasmodium vivax/efeitos dos fármacos , Administração Oral , Adulto , Antimaláricos/administração & dosagem , Antimaláricos/sangue , Biotransformação , Cloroquina/administração & dosagem , Cloroquina/análogos & derivados , Cloroquina/sangue , Cálculos da Dosagem de Medicamento , Resistência a Medicamentos , Feminino , Humanos , Malária Vivax/sangue , Malária Vivax/diagnóstico , Malária Vivax/parasitologia , Masculino , Modelos Biológicos , Carga Parasitária , Plasmodium vivax/crescimento & desenvolvimento , Resultado do Tratamento , Adulto Jovem
8.
Eur J Drug Metab Pharmacokinet ; 42(6): 993-1004, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28536776

RESUMO

BACKGROUND AND OBJECTIVE: Mycophenolic acid (MPA) provides effective treatment for lupus nephritis patients. Owing to its large pharmacokinetic variability, it is questionable whether standard fixed dose therapy can achieve optimal MPA exposure. The aim of this study was to develop a population pharmacokinetic model of MPA and its metabolite, 7-O-MPA-ß-glucuronide (MPAG), to identify important covariate influences and better predict patient dosing requirements. METHODS: MPA and MPAG concentration-time profiles were collected from 25 patients receiving mycophenolate mofetil (MMF) with or without cyclosporine (CsA) co-therapy. Samples were collected pre-dose and at 1, 2, 4, 6 and 8 h post-dose on one or two occasions. RESULTS: A total of 225 and 226 concentration-time measurements of MPA and MPAG, respectively, were used to develop the model, utilizing NONMEM® software. A two-compartment model with first-order absorption and elimination for MPA and a one-compartment model with first-order elimination and enterohepatic circulation (EHC) for MPAG best described the data. Apparent clearance of MPAG (CL/F MPAG) significantly decreased with reducing renal function and extent of EHC was reduced with concomitant CsA use. Simulations using the final model showed that a 70-kg subject with a creatinine clearance of 90 mL/min receiving concomitant CsA would require 1.25 g of MMF twice daily while a similar subject who did not receive concomitant CsA would require 0.75 g twice daily to achieve a MPA area under the concentration-time curve from 0 to 12 h (AUC0-12) of 45 mg·h/L. CONCLUSION: A 'tiered' dosing approach considering patient renal function and CsA co-therapy, rather than a 'one dose fits all' approach, would help individualize MMF therapy in adult lupus nephritis patients to ensure more patients have optimal MPA exposure.


Assuntos
Cálculos da Dosagem de Medicamento , Nefrite Lúpica/tratamento farmacológico , Ácido Micofenólico/farmacocinética , Ácido Micofenólico/uso terapêutico , Adulto , Simulação por Computador , Ciclosporina/farmacologia , Interações Medicamentosas , Feminino , Glucuronídeos/sangue , Glucuronídeos/farmacocinética , Humanos , Imunossupressores/sangue , Imunossupressores/farmacocinética , Imunossupressores/uso terapêutico , Nefrite Lúpica/sangue , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Ácido Micofenólico/análogos & derivados , Ácido Micofenólico/sangue , Adulto Jovem
9.
Intensive Care Med ; 42(10): 1535-1545, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26754759

RESUMO

PURPOSE: This study aims to determine if continuous infusion (CI) is associated with better clinical and pharmacokinetic/pharmacodynamic (PK/PD) outcomes compared to intermittent bolus (IB) dosing in critically ill patients with severe sepsis. METHODS: This was a two-centre randomised controlled trial of CI versus IB dosing of beta-lactam antibiotics, which enrolled critically ill participants with severe sepsis who were not on renal replacement therapy (RRT). The primary outcome was clinical cure at 14 days after antibiotic cessation. Secondary outcomes were PK/PD target attainment, ICU-free days and ventilator-free days at day 28 post-randomisation, 14- and 30-day survival, and time to white cell count normalisation. RESULTS: A total of 140 participants were enrolled with 70 participants each allocated to CI and IB dosing. CI participants had higher clinical cure rates (56 versus 34 %, p = 0.011) and higher median ventilator-free days (22 versus 14 days, p < 0.043) than IB participants. PK/PD target attainment rates were higher in the CI arm at 100 % fT >MIC than the IB arm on day 1 (97 versus 70 %, p < 0.001) and day 3 (97 versus 68 %, p < 0.001) post-randomisation. There was no difference in 14-day or 30-day survival between the treatment arms. CONCLUSIONS: In critically ill patients with severe sepsis not receiving RRT, CI demonstrated higher clinical cure rates and had better PK/PD target attainment compared to IB dosing of beta-lactam antibiotics. Continuous beta-lactam infusion may be mostly advantageous for critically ill patients with high levels of illness severity and not receiving RRT. Malaysian National Medical Research Register ID: NMRR-12-1013-14017.


Assuntos
Antibacterianos/administração & dosagem , Cuidados Críticos/métodos , Infusões Intravenosas/métodos , Sepse/tratamento farmacológico , beta-Lactamas/administração & dosagem , Adulto , Distribuição de Qui-Quadrado , Estado Terminal/terapia , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sepse/fisiopatologia , Estatísticas não Paramétricas
10.
Antimicrob Agents Chemother ; 60(1): 206-14, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26482304

RESUMO

Doripenem has been recently introduced in Malaysia and is used for severe infections in the intensive care unit. However, limited data currently exist to guide optimal dosing in this scenario. We aimed to describe the population pharmacokinetics of doripenem in Malaysian critically ill patients with sepsis and use Monte Carlo dosing simulations to develop clinically relevant dosing guidelines for these patients. In this pharmacokinetic study, 12 critically ill adult patients with sepsis receiving 500 mg of doripenem every 8 h as a 1-hour infusion were enrolled. Serial blood samples were collected on 2 different days, and population pharmacokinetic analysis was performed using a nonlinear mixed-effects modeling approach. A two-compartment linear model with between-subject and between-occasion variability on clearance was adequate in describing the data. The typical volume of distribution and clearance of doripenem in this cohort were 0.47 liters/kg and 0.14 liters/kg/h, respectively. Doripenem clearance was significantly influenced by patients' creatinine clearance (CL(CR)), such that a 30-ml/min increase in the estimated CL(CR) would increase doripenem CL by 52%. Monte Carlo dosing simulations suggested that, for pathogens with a MIC of 8 mg/liter, a dose of 1,000 mg every 8 h as a 4-h infusion is optimal for patients with a CL(CR) of 30 to 100 ml/min, while a dose of 2,000 mg every 8 h as a 4-h infusion is best for patients manifesting a CL(CR) of >100 ml/min. Findings from this study suggest that, for doripenem usage in Malaysian critically ill patients, an alternative dosing approach may be meritorious, particularly when multidrug resistance pathogens are involved.


Assuntos
Antibacterianos/farmacocinética , Carbapenêmicos/farmacocinética , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Modelos Estatísticos , Sepse/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/crescimento & desenvolvimento , Acinetobacter baumannii/patogenicidade , Adulto , Idoso , Antibacterianos/sangue , Antibacterianos/farmacologia , Carbapenêmicos/sangue , Carbapenêmicos/farmacologia , Creatinina/sangue , Estado Terminal , Doripenem , Feminino , Infecções por Bactérias Gram-Negativas/sangue , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/mortalidade , Humanos , Unidades de Terapia Intensiva , Malásia , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Método de Monte Carlo , Estudos Prospectivos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Sepse/sangue , Sepse/microbiologia , Sepse/mortalidade , Análise de Sobrevida
11.
Br J Clin Pharmacol ; 80(5): 1064-75, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25959850

RESUMO

AIMS: The aim was to examine relationships between total and unbound mycophenolic acid (MPA) and prednisolone exposure and clinical outcomes in patients with lupus nephritis. METHODS: Six blood samples were drawn pre- and at 1, 2, 4, 6 and 8 h post-dose and total and unbound MPA and prednisolone pre-dose (C0 ), maximum concentration (Cmax ) and area under the concentration-time curve (AUC) were determined using non-compartmental analysis in 25 patients. The analyses evaluated drug exposures in relation to treatment response since starting MPA and drug-related adverse events. RESULTS: Dose-normalized AUC varied 10-, 8-, 7- and 19-fold for total MPA, unbound MPA, total prednisolone and unbound prednisolone, respectively. Median values (95% CI) of total MPA AUC(0,8 h) (21.5 [15.0, 42.0] vs. 11.2 [4.8, 30.0] mg l(-1) h, P= 0.048) and Cmax (11.9 [6.7, 26.3] vs. 6.1 [1.6, 9.2] mg l(-1) , P = 0.016) were significantly higher in responders than non-responders. Anaemia was significantly associated with higher total (37.8 [14.1, 77.5] vs. 18.5 [11.7, 32.7] mg l(-1) h, P = 0.038) and unbound MPA AUC(0,12 h) (751 [214, 830] vs. 227 [151, 389] mg l(-1) h, P = 0.004). Unbound prednisolone AUC(0,24 h) was significantly higher in patients with Cushingoid appearance (unbound: 1372 [1242, 1774] vs. 846 [528, 1049] nmol l(-1) h, P = 0.019) than in those without. Poorer treatment response was observed in patients with lowest tertile exposure to both total MPA and prednisolone as compared with patients with middle and higher tertile exposure (17% vs. 74%, P = 0.023). CONCLUSIONS: This study suggests a potential role for therapeutic drug monitoring in individualizing immunosuppressant therapy in patients with lupus nephritis.


Assuntos
Imunossupressores/farmacocinética , Imunossupressores/uso terapêutico , Nefrite Lúpica/tratamento farmacológico , Ácido Micofenólico/farmacocinética , Ácido Micofenólico/uso terapêutico , Prednisolona/farmacocinética , Prednisolona/uso terapêutico , Adulto , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos , Quimioterapia Combinada , Feminino , Humanos , Imunossupressores/efeitos adversos , Imunossupressores/sangue , Masculino , Pessoa de Meia-Idade , Ácido Micofenólico/efeitos adversos , Ácido Micofenólico/sangue , Prednisolona/efeitos adversos , Prednisolona/sangue , Adulto Jovem
12.
Clin Pharmacokinet ; 53(3): 227-245, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24327238

RESUMO

Mycophenolic acid (MPA) is a potent immunosuppressant agent, which is increasingly being used in the treatment of patients with various autoimmune diseases. Dosing to achieve a specific target MPA area under the concentration-time curve from 0 to 12 h post-dose (AUC12) is likely to lead to better treatment outcomes in patients with autoimmune disease than a standard fixed-dose strategy. This review summarizes the available published data around concentration monitoring strategies for MPA in patients with autoimmune disease and examines the accuracy and precision of methods reported to date using limited concentration-time points to estimate MPA AUC12. A total of 13 studies were identified that assessed the correlation between single time points and MPA AUC12 and/or examined the predictive performance of limited sampling strategies in estimating MPA AUC12. The majority of studies investigated mycophenolate mofetil (MMF) rather than the enteric-coated mycophenolate sodium (EC-MPS) formulation of MPA. Correlations between MPA trough concentrations and MPA AUC12 estimated by full concentration-time profiling ranged from 0.13 to 0.94 across ten studies, with the highest associations (r (2) = 0.90-0.94) observed in lupus nephritis patients. Correlations were generally higher in autoimmune disease patients compared with renal allograft recipients and higher after MMF compared with EC-MPS intake. Four studies investigated use of a limited sampling strategy to predict MPA AUC12 determined by full concentration-time profiling. Three studies used a limited sampling strategy consisting of a maximum combination of three sampling time points with the latest sample drawn 3-6 h after MMF intake, whereas the remaining study tested all combinations of sampling times. MPA AUC12 was best predicted when three samples were taken at pre-dose and at 1 and 3 h post-dose with a mean bias and imprecision of 0.8 and 22.6 % for multiple linear regression analysis and of -5.5 and 23.0 % for maximum a posteriori (MAP) Bayesian analysis. Although mean bias was less when data were analysed using multiple linear regression, MAP Bayesian analysis is preferable because of its flexibility with respect to sample timing. Estimation of MPA AUC12 following EC-MPS administration using a limited sampling strategy with samples drawn within 3 h post-dose resulted in biased and imprecise results, likely due to a longer time to reach a peak MPA concentration (t max) with this formulation and more variable pharmacokinetic profiles. Inclusion of later sampling time points that capture enterohepatic recirculation and t max improved the predictive performance of strategies to predict EC-MPS exposure. Given the considerable pharmacokinetic variability associated with mycophenolate therapy, limited sampling strategies may potentially help in individualizing patient dosing. However, a compromise needs to be made between the predictive performance of the strategy and its clinical feasibility. An opportunity exists to combine research efforts globally to create an open-source database for MPA (AUC, concentrations and outcomes) that can be used and prospectively evaluated for AUC target-controlled dosing of MPA in autoimmune diseases.


Assuntos
Antibióticos Antineoplásicos/análise , Antibióticos Antineoplásicos/farmacocinética , Doenças Autoimunes/metabolismo , Ácido Micofenólico/análise , Ácido Micofenólico/farmacocinética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Manejo de Espécimes , Adulto Jovem
13.
Clin Pharmacokinet ; 52(5): 303-31, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475567

RESUMO

Mycophenolic acid (MPA), the active drug moiety of mycophenolate, is a potent immunosuppressant agent, which is increasingly being used in the treatment of patients with various autoimmune diseases. An understanding of the pharmacokinetics and pharmacodynamics of mycophenolate in this population should assist the clinician with rational dosage decisions. This review aims to provide an overview of the published literature on the clinical pharmacokinetics of mycophenolate in autoimmune disease and a briefer summary of current pharmacodynamic knowledge, and to identify areas of potential future research in this field. A literature search was conducted using PubMed and EMBASE databases as well as bibliographies of relevant articles and 'on-line early' pages of key journals. Twenty-six pharmacokinetic/pharmacodynamic studies of mycophenolate in people with autoimmune disease were identified and appraised. Twenty-two of these studies used non-compartmental analysis techniques and four used population modelling methods to estimate mycophenolate pharmacokinetic parameters. Seven studies linked mycophenolate exposure to treatment outcomes. Only four studies measured free (unbound) as well as total mycophenolate exposure and only two studies characterised MPA disposition following enteric-coated mycophenolate sodium (EC-MPS) administration. Across all studies MPA displayed erratic and complex pharmacokinetics with substantial between-subject variability. Based on total drug measurement, the dose-normalised MPA area under the plasma concentration-time curve (AUC) from 0 to 12 h post-dose (AUC12) varied at least five- to ten-fold between subjects. Typical values for apparent oral clearance (CL/F) of MPA during nonlinear mixed-effects modelling ranged from 8.3 to 25.3 L/h. Patient renal function, serum albumin levels, sex, ethnicity, food intake, concurrent administration of interacting drugs such as antacids, metal-containing medications and proton pump inhibitors and polymorphisms in genes encoding uridine diphosphate glucuronosyltransferase were identified in some studies as having a significant influence on the pharmacokinetics of mycophenolate. Typical MPA CL/F values in autoimmune disease patients were generally slightly lower than values published previously in population pharmacokinetic studies involving renal allograft recipients, possibly because of usage of ciclosporin, poorer renal function or lower serum albumin levels in the renal transplant cohort. In a single crossover study involving ten subjects only, significantly higher MPA AUC12 and maximum MPA concentration (C max) and lower MPA CL/F were reported following EC-MPS administration compared to mycophenolate mofetil administration. MPA exposure correlated well with treatment efficacy in patients with autoimmune disease (response to treatment, active disease and disease markers); however the relationship between MPA exposure and adverse events (infectious episodes, haematological toxicity and gastrointestinal symptoms) was unclear. Further investigation is required in autoimmune diseases such as chronic plaque psoriasis and rheumatoid arthritis and following EC-MPS administration. The extent of within-subject variability in the pharmacokinetics of mycophenolate is largely unknown and potential covariate influences need to be confirmed in studies with large subject numbers. A relationship between MPA and MPA metabolite exposure and toxicity needs to be established. The contribution of pharmacogenetics to the pharmacokinetics and pharmacodynamics of mycophenolate warrants further investigation, as does the utility of therapeutic drug monitoring. Dosing to achieve a target MPA AUC12 >35 mg·h/L is likely to lead to better efficacy outcomes in patients with autoimmune disease (rather than just giving standard doses, which lead to a wide range of exposures). However, the relationship between mycophenolate exposure and toxicity requires further investigation to determine the upper end of a target AUC range.


Assuntos
Doenças Autoimunes/tratamento farmacológico , Imunossupressores/farmacocinética , Ácido Micofenólico/análogos & derivados , Área Sob a Curva , Doenças Autoimunes/imunologia , Relação Dose-Resposta a Droga , Monitoramento de Medicamentos , Humanos , Imunossupressores/administração & dosagem , Imunossupressores/uso terapêutico , Modelos Biológicos , Ácido Micofenólico/administração & dosagem , Ácido Micofenólico/farmacocinética , Ácido Micofenólico/uso terapêutico , Dinâmica não Linear , Farmacogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...